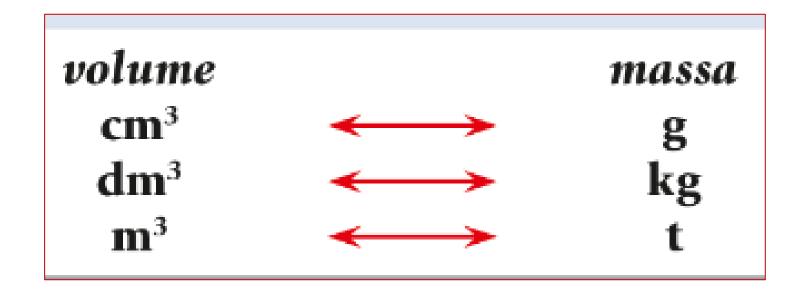
LA DENSITA'

Prof. Fusi Carlo

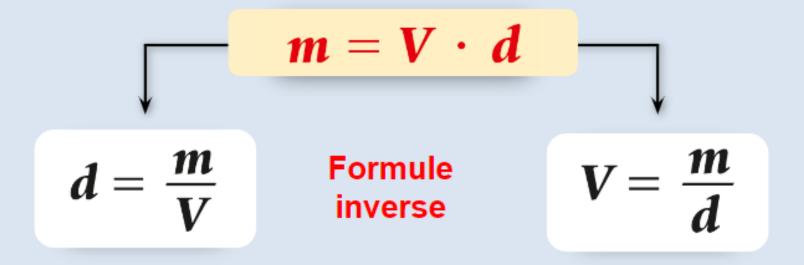
La densità

La densità è una *grandezza derivata* nel sistema SI.


La densità *d* di un corpo è uguale al rapporto tra la sua massa *m* e il suo volume *V*:

densità (kg/m³)
$$d = \frac{m}{V}$$
 massa (kg) volume (m³)

L'unità di misura della densità è il **kilogrammo al metro cubo** (kg/m³), rapporto tra l'unità di massa e l'unità di volume.


FORMULA DIRETTA:

$$d(densita) = m (massa)$$
 $V (volume)$

Determinare la massa di un oggetto

Per determinare la massa di un oggetto massiccio e omogeneo si moltiplica il volume per il numero che esprime la densità della sostanza di cui è costituito.

Densità dei materiali

La densità dei liquidi e dei solidi è una proprietà che dipende soprattutto dal materiale:

SOSTANZA (O MISCUGLIO)	DENSITÀ (kg/m³)	SOSTANZA (O MISCUGLIO)	DENSITÀ (kg/m³)
Platino	21 450	Il Sole	1410
Oro	19 300	Glicerina	1260
Mercurio	13 550	Il corpo umano	1070
Argento	10 500	Acqua distillata (a 4 °C)	1000
Rame	8960	Olio di oliva	920
Ferro	7860	Ghiaccio	917
La Terra	5515	Aria (al livello del mare)	1,29
Alluminio	2700	Aria (a 20 km di altitudine)	0,09

La densità dell'acqua è pari a **1000 Kg/m³**, molto più alta rispetto a molti altri materiali. Il legno d'acero (densità media di ca 800 Kg/m³) infatti galleggia sull'acqua proprio perché ha una densità minore.

Questo vale anche per tutti gli altri materiali che galleggiano sull'acqua perché hanno una minore densità.

Conversioni tra unità di densità

Talvolta la densità è espressa in g/cm³.

Per trovare il valore corrispondente in kg/m³ bisogna convertire separatamente i grammi in kilogrammi e i centimetri cubi in metri cubi, come nell'esempio:

$$0.917 \frac{g}{cm^3} = 0.917 \frac{10^{-3} \text{ kg}}{10^{-6} \text{ m}^3} = 9.17 \times 10^3 \frac{\text{kg}}{\text{m}^3} = 917 \frac{\text{kg}}{\text{m}^3}$$

Per passare da g/cm³ a kg/m³ si moltiplica per 1000; per passare da kg/m³a g/cm³ si divide per 1000.

PALLA DA PING PONG

OLIO DA LAMPADA ALCOOL

OLIO VEGETALE

ACQUA

DETERSIVO

LATTE

SCIROPPO D'ACERO

SCIROPPO DI MAIS

MIELE

PERLINA

POMODORO

DADO

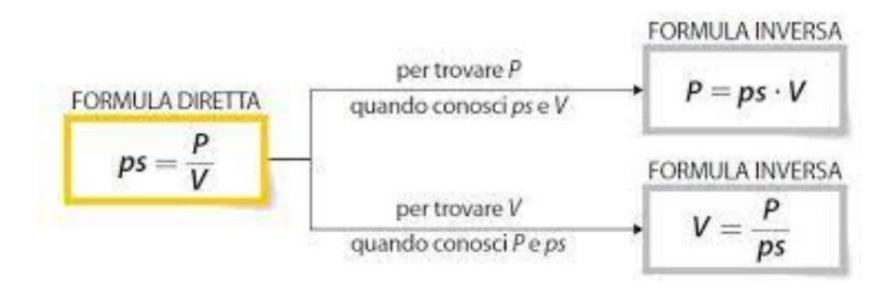
POPCORN

VITE

IL PESO SPECIFICO

Che cos'è il peso specifico assoluto?

Si definisce **peso specifico assoluto** il rapporto tra il **peso** di un corpo P e il suo volume V.


Il peso specifico assoluto si calcola con la seguente formula

$$P_s = \frac{P}{V}$$

in cui:

- P_s è il peso specifico
- P è il peso (calcolato in newton)
- V è il volume (calcolato in m³)

La formula diretta e quelle inverse del peso specifico:

Nel Sistema internazionale l'unità di misura è il **N/m³**.